skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, Elizabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The introduction of hippos into the wild in Colombia has been marked by their rapid population growth and widespread dispersal on the landscape, high financial costs of management, and conflicting social perspectives on their management and fate. Here we use population projection models to investigate the effectiveness and cost of management options under consideration for controlling introduced hippos. We estimate there are 91 hippos in the middle Magdalena River basin, Colombia, and the hippo population is growing at an estimated rate of 9.6% per year. At this rate, there will be 230 hippos by 2032 and over 1,000 by 2050. Applying the population control methods currently under consideration will cost at least 1–2 million USD to sufficiently decrease hippo population growth to achieve long-term removal, and depending on the management strategy selected, there may still be hippos on the landscape for 50–100 years. Delaying management actions for a single decade will increase minimum costs by a factor of 2.5, and some methods may become infeasible. Our approach illustrates the trade-offs inherent between cost and effort in managing introduced species, as well as the importance of acting quickly, especially when dealing with species with rapid population growth rates and potential for significant ecological and social impacts. 
    more » « less
  2. In recent years, large-scale datasets, each typically tailored to a particular problem, have become a critical factor towards fueling rapid progress in the field of computer vision. This paper describes a valuable new dataset that should accelerate research efforts on problems such as fine-grained classification, instance recognition and retrieval, and geolocalization. The dataset, comprised of more than 2400 individual castles, palaces and fortresses from more than 90 countries, contains more than 770K images in total. This paper details the dataset's construction process, the characteristics including annotations such as location (geotagged latlong and country label), construction date, Google Maps link and estimated per-class and per-image difficulty. An experimental section provides baseline experiments for important vision tasks including classification, instance retrieval and geolocalization (estimating global location from an image's visual appearance). The dataset is publicly available at vision.cs.byu.edu/castles. 
    more » « less
  3. Abstract: Introduced species can have strong ecological, social and economic effects on their non-native environment. Introductions of megafaunal species are rare and may contribute to rewilding efforts, but they may also have pronounced socio-ecological effects because of their scale of influence. A recent introduction of the hippopotamus (Hippopotamus amphibius) into Colombia is a novel introduction of a megaherbivore onto a new continent, and raises questions about the future dynamics of the socio-ecological system into which it has been introduced. Here we synthesize current knowledge about the Colombian hippopotamus population, review the literature on the species to predict potential ecological and socio-economic effects of this introduction, and make recommendations for future study. Hippopotamuses can have high population growth rates (7–11%) and, on the current trajectory, we predict there could be 400–800 individuals in Colombia by 2050. The hippopotamus is an ecosystem engineer that can have profound effects on terrestrial and aquatic environments and could therefore affect the native biodiversity of the Magdalena River basin. Hippopotamuses are also aggressive and may pose a threat to the many inhabitants of the region who rely upon the Magdalena River for their livelihoods, although the species could provide economic benefits through tourism. Further research is needed to quantify the current and future size and distribution of this hippopotamus population and to predict the likely ecological, social and economic effects. This knowledge must be balanced with consideration of social and cultural concerns to develop appropriate management strategies for this novel introduction. 
    more » « less
  4. Computational advances reveal opportunities for more sustainable hydropower development in large transboundary river basins. 
    more » « less
  5. Abstract The increasing availability of high‐frequency freshwater ecosystem metabolism data provides an opportunity to identify links between metabolic regimes, as gross primary production and ecosystem respiration patterns, and consumer energetics with the potential to improve our current understanding of consumer dynamics (e.g., population dynamics, community structure, trophic interactions). We describe a conceptual framework linking metabolic regimes of flowing waters with consumer community dynamics. We use this framework to identify three emerging research needs: (1) quantifying the linkage of metabolism and consumer production data via food web theory and carbon use efficiencies, (2) evaluating the roles of metabolic dynamics and other environmental regimes (e.g., hydrology, light) in consumer dynamics, and (3) determining the degree to which metabolic regimes influence the evolution of consumer traits and phenology. Addressing these needs will improve the understanding of consumer biomass and production patterns as metabolic regimes can be viewed as an emergent property of food webs. 
    more » « less
  6. null (Ed.)